11 research outputs found

    Smart IoT Gateway For Heterogeneous Devices Interoperability

    Full text link
    "(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."The Internet of things (IoT) will interconnect a huge amount of devices, leading to a new way of interaction in the physical and virtual world, inspired by the idea of ubiquity, where all the objects around us, such as: sensors, automobiles, refrigerators, thermostats, industrial robots, tablets, smartphones, etc. could be connected anytime and anywhere. However, one of the main challenges that faces IoT is the high degree of heterogeneity in terms of communication capabilities of the devices, protocols, technologies or hardware. We focus on the implementation of a new Smart IoT Gateway designed to allow interconnection and interoperability between heterogeneous devices in the IoT. The proposed gateway offers significant advantages: (i) it enables connectivity of different protocols and traditional communication technologies (Ethernet) and wireless (ZigBee, Bluetooth, Wi-Fi); (ii) it uses a flexible protocol that translates all the data obtained from the different sensors into a uniform format, performing the analysis of the data obtained from the environment-based-rules related to the different types of sensors; (iii) it uses a lightweight and optimal protocol on the use of devices with limited resources for delivering information environment; and (iv) it provides local data storage for later use and analysis. Our proof of concept demonstrates the performance and capacity of the proposed Smart IoT Gateway is related with Active and Healthy Aging (AHA).Yacchirema-Vargas, DC.; Palau Salvador, CE. (2016). Smart IoT Gateway For Heterogeneous Devices Interoperability. IEEE Latin America Transactions. 14(8):3900-3906. https://doi.org/10.1109/TLA.2016.7786378S3900390614

    Interoperability in IoT

    Full text link
    Interoperability refers to the ability of IoT systems and components to communicate and share information among them. This crucial feature is key to unlock all of the IoT paradigm´s potential, including immense technological, economic, and social benefits. Interoperability is currently a major challenge in IoT, mainly due to the lack of a reference standard and the vast heterogeneity of IoT systems. IoT interoperability has also a significant importance in big data analytics because it substantively eases data processing. This chapter analyzes the critical importance of IoT interoperability, its different types, challenges to face, diverse use cases, and prospective interoperability solutions. Given that it is a complex concept that involves multiple aspects and elements of IoT, for a deeper insight, interoperability is studied across different levels of IoT systems. Furthermore, interoperability is also re-examined from a global approach among platforms and systems.González-Usach, R.; Yacchirema-Vargas, DC.; Julián-Seguí, M.; Palau Salvador, CE. (2019). Interoperability in IoT. Handbook of Research on Big Data and the IoT. 149-173. http://hdl.handle.net/10251/150250S14917

    Arquitectura de Analítica de Big Data para Aplicaciones de Ciberseguridad

    Get PDF
    The technological and social changes in the  cur- rent information age pose new challenges for security analysts. Novel strategies and security solutions are sought to improve security operations concerning the detection and analysis of security threats and attacks. Security analysts address security challenges by analyzing large amounts of data from server logs, communication equipment, security solutions, and blogs related to information security in different structured and unstructured formats. In this paper, we examine the application of big data to support some security activities and conceptual models to generate knowledge that can be used for the decision making or automation of security response action. Concretely, we present a massive data processing methodology and introduce  a  big data architecture devised for cybersecurity applications. This architecture identifies anomalous behavior patterns and trends to anticipate cybersecurity attacks characterized as relatively random, spontaneous, and out of the ordinary.Los cambios tecnológicos y  sociales  en  la  era de la información actual plantean nuevos desafíos para los analistas de seguridad. Se buscan nuevas estrategias y soluciones de seguridad para mejorar las operaciones de seguridad relacionadas con la detección y análisis de amenazas y ataques a la seguridad. Los analistas de seguridad abordan los desafíos de seguridad al analizar grandes cantidades de datos de registros de servidores, equipos de comunicación, soluciones de seguridad y blogs relacionados con la seguridad de la información en diferentes formatos estructurados y no estructurados. En este artículo, se examina la aplicación de big data para respaldar algunas actividades de seguridad y modelos conceptuales para generar conocimiento que se pueda utilizar  para  la  toma de decisiones o la  automatización  de  la  acción  de  respuesta de seguridad. En concreto, se presenta una metodología de procesamiento   masivo   de   datos    y   se   introduce una arquitectura  de  big   data  ideada   para   aplicaciones de ciberseguridad. Esta arquitectura identifica patrones de comportamiento anómalos y tendencias para anticipar ataques de ciberseguridad caracterizados como relativamente aleatorios, espontáneos y fuera de lo común

    A Smart System for Sleep Monitoring by Integrating IoT With Big Data Analytics

    Full text link
    [EN] Obtrusive sleep apnea (OSA) is one of the most important sleep disorders because it has a direct adverse impact on the quality of life. Intellectual deterioration, decreased psychomotor performance, behavior, and personality disorders are some of the consequences of OSA. Therefore, a real-time monitoring of this disorder is a critical need in healthcare solutions. There are several systems for OSA detection. Nevertheless, despite their promising results, these systems not guiding their treatment. For these reasons, this research presents an innovative system for both to detect and support of treatment of OSA of elderly people by monitoring multiple factors such as sleep environment, sleep status, physical activities, and physiological parameters as well as the use of open data available in smart cities. Our system architecture performs two types of processing. On the one hand, a pre-processing based on rules that enables the sending of real-time notifications to responsible for the care of elderly, in the event of an emergency situation. This pre-processing is essentially based on a fog computing approach implemented in a smart device operating at the edge of the network that additionally offers advanced interoperability services: technical, syntactic, and semantic. On the other hand, a batch data processing that enables a descriptive analysis that statistically details the behavior of the data and a predictive analysis for the development of services, such as predicting the least polluted place to perform outdoor activities. This processing uses big data tools on cloud computing. The performed experiments show a 93.3% of effectivity in the air quality index prediction to guide the OSA treatment. The system's performance has been evaluated in terms of latency. The achieved results clearly demonstrate that the pre-processing of data at the edge of the network improves the efficiency of the system.This work was supported in part by the European Union's Horizon 2020 Research and Innovation Programme through the Interoperability of Heterogeneous IoT Platforms Project (INTER-IoT) under Grant 687283, in part by the Escuela Politecnica Nacional, Ecuador, and in part by the Secretaria Nacional de Educacion Superior, Ciencia, Tecnologia e Innovacion (SENESCYT), Ecuador.Yacchirema-Vargas, DC.; Sarabia-Jácome, DF.; Palau Salvador, CE.; Esteve Domingo, M. (2018). A Smart System for Sleep Monitoring by Integrating IoT With Big Data Analytics. IEEE Access. 6:35988-36001. https://doi.org/10.1109/ACCESS.2018.2849822S3598836001

    System for monitoring and supporting the treatment of sleep apnea using IoT and big data

    Full text link
    [EN] Sleep apnea has become in the sleep disorder that causes greater concern in recent years due to its morbidity and mortality, higher medical care costs and poor people quality of life. Some proposals have addressed sleep apnea disease in elderly people, but they have still some technical limitations. For these reasons, this paper presents an innovative system based on fog and cloud computing technologies which in combination with IoT and big data platforms offers new opportunities to build novel and innovative services for supporting the sleep apnea and to overcome the current limitations. Particularly, the system is built on several low-power wireless networks with heterogeneous smart devices (i.e, sensors and actuators). In the fog, an edge node (Smart IoT Gateway) provides IoT connection and interoperability and pre-processing IoT data to detect events in real-time that might endanger the elderly's health and to act accordingly. In the cloud, a Generic Enabler Context Broker manages, stores and injects data into the big data analyzer for further processing and analyzing. The system's performance and subjective applicability are evaluated using over 30 GB size datasets and a questionnaire fulfilled by medicals specialist, respectively. Results show that the system data analytics improve the health professionals' decision making to monitor and guide sleep apnea treatment, as well as improving elderly people's quality of life. (C) 2018 Elsevier B.V. All rights reserved.This research was supported by the Ecuadorian Government through the Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) and has received funding from the European Union's "Horizon 2020'' research and innovation program as part of the ACTIVAGE project under Grant 732679 and the Interoperability of Heterogeneous IoT Platforms project (INTER-IoT) under Grant 687283.Yacchirema-Vargas, DC.; Sarabia-Jácome, DF.; Palau Salvador, CE.; Esteve Domingo, M. (2018). System for monitoring and supporting the treatment of sleep apnea using IoT and big data. Pervasive and Mobile Computing. 50:25-40. https://doi.org/10.1016/j.pmcj.2018.07.007S25405

    Arquitectura de Interoperabilidad de dispositivos físicos para el Internet de las Cosas (IoT)

    Full text link
    [ES] La visión del Internet de las cosas (IoT) implica un ecosistema global hiperco-nectado en el que todos los dispositivos con capacidad de comunicación se conecten de manera ubicua a Internet. Sin embargo, para alcanzar todo el po-tencial de IoT, no es suficiente que los dispositivos estén conectados a Inter-net, también necesitan comunicarse e interactúan entre sí. Desafortunadamen-te, construir un ecosistema global de dispositivos que se conecten entre sí sin problemas es prácticamente imposible hoy en día. La razón es que IoT está constituida por una plétora de dispositivos heterogéneos en términos del for-mato de datos y componentes de comunicación que lo forman, como por ejemplo hardware, tecnologías y protocolos de comunicación. Esta heteroge-neidad lleva inevitablemente a la aparición de "silos verticales" que están aisla-dos al resto de IoT (p. ej., todavía necesitamos instalar 5 aplicaciones para in-teractuar con 5 dispositivos diferentes debido a la incompatibilidad entre estos dispositivos), exacerbada aún más por el hecho de que miles de millones de dispositivos de próxima generación dependerán de su capacidad de conectarse entre sí para obtener el mayor beneficio. Por lo tanto, la interoperabilidad de dispositivos es uno de los principales desa-fíos a enfrentar en al ámbito de investigación de IoT. En tal sentido, la abstrac-ción de la heterogeneidad hardware y software subyacentes de los dispositivos y la conversión de protocolos para el intercambio de información entre los mismos presenta una estrategia clave. En esta tesis se ha especificado una ar-quitectura de interoperabilidad para habilitar la comunicación entre dispositivos en IoT y su integración con plataformas IoT estándar. La arquitectura está fundamentada en tendencias de investigación recientes y mejores prácticas como el modelo de referencia arquitectónico (IoT-A) y la arquitectura funcio-nal M2M, pero adaptada a unos requerimientos que hacen que esta solución pueda utilizarse para la implementación de aplicaciones IoT en diferentes en-tornos. El diseño de la arquitectura, se ha llevado a una primera implementación proto-tipo, denominada smart IoT gateway, que tiene como objetivo habilitar la inter-operabilidad técnica y sintáctica de dispositivos heterogéneos. De forma análo-ga, se proyecta una segunda implementación, denominada arquitectura de in-terconexión la cual extiende las funcionalidades del smart IoT gateway a través de la integración de una entidad proxy de interconexión que permite la integración de dispositivos heterogéneos con plataformas IoT estándar. En forma consecuente con el actual enfoque pragmático de IoT, la utilidad y viabilidad de las implementaciones de la arquitectura se ha demostrado median-te testbeds aplicados a dos casos de uso IoT. Dichos casos de uso se derivan del proyecto Europeo INTER-IoT financiado por la Unión Europea a través del programa Horizonte H2020. El primero de ellos, es INTER-LogP, que tiene por objetivo mejorar los procesos de gestión de transporte y logística en entor-nos portuarios, por medio del intercambio de información entre las distintas plataformas IoT heterogéneas involucradas. El segundo, INTER-Health, pre-tende monitorizar el entorno y el estilo de vida de las personas de forma des-centralizada y con movilidad, para prevenir problemas de salud. Finalmente, la experiencia adquirida en el despliegue de estos casos de uso ha motivado el desarrollo de nuevas propuestas y estudios de aplicación de IoT que representan una contribución adicional de la presente tesis doctoral.[CA] La visió de la Internet de les coses (IoT) implica un ecosistema global hiperco-nectado en el qual tots els dispositius amb capacitat de comunicació es connec-ten de manera ubiqua a la Internet. No obstant això, per a aconseguir tot el po-tencial de IoT, no és suficient que els dispositius estiguen connectats a Inter-net, també necessiten comunicar-se i interactuen entre si. Desafortunadamen-et, construir un ecosistema global de dispositius que es connecten entre si sen-se problemes és pràcticament impossible hui dia. El raó és que IoT està consti-tuïda per una plètora de dispositius heterogenis en termes del for-mate de da-des i components de comunicació que ho formen, com per exemple maquinari, tecnologies i protocols de comunicació. Aquesta heteroge-neidad porta inevi-tablement a l'aparició de "sitges verticals" que estan aisla-dues a la resta de IoT (p. ex., encara necessitem instal·lar 5 aplicacions per a in-teractuar amb 5 dis-positius diferents a causa de la incompatibilitat entre aquests dispositius), exa-cerbada encara més pel fet que milers de milions de dispositius de pròxima generació dependran de la seua capacitat de connectar-se entre si per a obtindre el major benefici. Per tant, la interoperabilitat de dispositius és un dels principals desa-fíos a en-frontar en a l'àmbit d'investigació de IoT. En tal sentit, la abstrac-ción de l'hete-rogeneïtat maquinari i programari subjacent dels dispositius i la conversió de protocols per a l'intercanvi d'informació entre els mateixos presenta una estra-tègia clau. En aquesta tesi s'ha especificat una ar-quitectura d'interoperabilitat per a habilitar la comunicació entre dispositius en IoT i la seua integració amb plataformes estàndard. L'arquitectura està fonga-esmentada en tendències d'in-vestigació recents i millors pràctiques com el model de referència arquitectònic IoT-A i l'arquitectura funcional M2M, però adaptada a un requeriments que fan que aquesta solució puga utili-zarse per a la implementació d'aplicacions IoT en diferents entorns. El disseny de l'arquitectura, s'ha portat a una primera implementació proto-tipus, denominada smart IoT gateway, que té com a objectiu habilitar la inter-operabilitat tècnica i sintàctica de dispositius heterogenis. De forma análo-ga, es projecta una segona implementació, denominada arquitectura de in-terconexión la qual estén les funcionalitats del smart IoT gateway a través de la integració d'una entitat proxy d'interconnexió que permet la integració de dis-positius heterogenis amb plataformes IoT estàndard. En forma conseqüent amb l'actual enfocament pragmàtic de IoT, la utilitat i viabilitat de les implementacions de l'arquitectura s'ha demostrat medien-et testbeds aplicats a dos casos d'ús IoT derivats del projecte Europeu INTER-IoT finançat per la Unió Europea a través del programa Horitzó H2020. El primer d'ells, és INTER-LogP, que té per objectiu millorar els processos de gestió de transport i logística en entorns portuaris, per mitjà de l'intercanvi d'in-formació entre les diferents plataformes IoT hete-rogéneas involucrades. El segon, INTER-Health, pretén monitorar l'entorn i l'estil de vida de les perso-nes de forma descentralitzada i amb mo-vilidad, per a previndre problemes de salut. Finalment, l'experiència adquirida en el desplegament d'aquests casos d'ús ha motivat el desenvolupament de noves propostes i estudis d'aplicació de IoT que representen una contribució addicional de la present tesi doctoral.[EN] The vision of the Internet of Things (IoT) implies a hyper-connected global ecosystem in which all devices with communication capacity are ubiquitously connected to the Internet. However, to reach the full potential of IoT, it is not enough that the devices are connected to Internet, they also need to communi-cate and interact with each other. Unfortunately, building a global ecosystem of devices that connect with each other without problems is practically impossible nowadays. The reason is that IoT is constituted by a plethora of heterogeneous devices in terms of the data format and communication components that make it up, such as hardware, technologies and communication protocols. This het-erogeneity inevitably leads to the appearance of "vertical silos" that are isolated from the rest of the IoT (e.g., we still need to install 5 applications to interact with 5 different devices due to the incompatibility between these devices), further exacerbated by the fact that billions of next-generation devices will depend on their ability to connect with each other to get the most benefit. Therefore, the interoperability of devices is one of the main challenges to face in the field of IoT research. In this sense, the abstraction of the underlying hardware and software heterogeneity of the devices and the conversion of pro-tocols for the exchange of information between them presents a key strategy. This thesis has specified an interoperability architecture to enable communica-tion between devices in IoT and its integration with standard platforms. The architecture is based on recent research trends and best practices such as the architectural reference model (IoT-A) and the M2M functional architecture but adapted to some requirements that make this solution be used for the imple-mentation of IoT applications in different environments. The design of the architecture has led to first prototype implementation, called smart IoT gateway, which aims to enable the technical and syntactic interoper-ability of heterogeneous devices. Analogously, a second implementation is planned, called an interconnection architecture which extends the functionali-ties of the smart IoT gateway through the integration of a proxy interconnec-tion entity that allows the integration of heterogeneous devices with standard IoT platforms. Consistent with the current pragmatic IoT approach, the utility and feasibility of architecture implementations have been demonstrated by means of testbeds applied to two IoT use cases. These use cases are derived from the European INTER-IoT project financed by the European Union through the Horizon H2020 program. The first of these is INTER-LogP, which aims to improve transport and logistics management processes in port environments, through the exchange of information between the different heterogeneous IoT plat-forms involved. The second, INTER-Health, pretend to monitor the environ-ment and lifestyle of people in a decentralized manner and with mobility, to prevent health problems. Finally, the experience acquired in the deployment of these cases of use has motivated the development of new proposals and IoT application studies that represent an additional contribution to the present doctoral thesis.Al Estado Ecuatoriano, y en especial a la Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENSECYT) y a la Escuela Politécnica Nacional (EPN). [También] al proyecto europeo IoT financiado por la Unión Europea a través del programa Horizonte H2020Yacchirema Vargas, DC. (2019). Arquitectura de Interoperabilidad de dispositivos físicos para el Internet de las Cosas (IoT) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/129858TESI

    Ontología para la representación de redes semánticas de sensores

    Full text link
    [ES] Una Red de Sensores inalámbrica o WSN, está definida como un conjunto de nodos que monitorean variables físicas y ambientales tales como temperatura, movimiento, humedad, etc. requeridas para una aplicación específica. Debido a la importancia de las mediciones tomadas por estos dispositivos el poder disponer de una base de conocimiento de los datos de estos sensores es indispensable. En este trabajo se presenta el desarrollo de una ontología (OntoS) para la representación de redes semánticas de sensores entorno a los siguientes aspectos: localización, características físicas, medidas, propiedades de medida, propiedades de funcionamiento, tipo de operación e información (metadato) del sensor. La ontología se desarrolló en la herramienta de código abierto Protégé, tomando como base las metodologías de Noy & McGuiness y Methontology, estas metodologías permitieron determinar de forma clara y concisa el dominio de la ontología. Para poder validar la ontología se utilizó el razonador Pellet, el cual permitió: chequear la consistencia de la ontología, obtener automáticamente la clasificación taxonómica y computar los tipos inferidos. Se han definido algunas consultas SPARQL para la recuperación de la información de los datos de los sensores instanciados en la ontología, con el objetivo de poder visualizar esta información se ha desarrollado una aplicación Web de búsqueda de información basada en la ontología creada; aplicación que permite filtrar la búsqueda por tipo de sensor y obtener la información detallada de los sensores instanciados. Las pruebas de la aplicación se han realizado cargando el modelo de la ontología desde un fichero OWL, para ello se ha utilizado la herramienta Jena.[EN] A wireless sensor network or WSN, is defined as a set of nodes that monitor physical and environmental variables such as temperature, motion, humidity, etc. required for a specific application. Because of the importance of the measurements taken by these devices have a power base of knowledge of the data from these sensors is indispensable. This paper presents the development of an ontology (Ontos) for the representation of semantic networks of sensors around the following aspects: location, physical characteristics, measures, measurement properties, functioning, type of operation and information (metadata) the sensor. The ontology developed in the open source tool Protégé, based methodologies Noy & McGuiness and Methontology, these methods allowed us to determine clearly and concisely the domain ontology. In order to validate the ontology reasoner Pellet was used, which allowed: checking the consistency of the ontology, taxonomy automatically obtain and compute inferred types. Have defined some SPARQL queries for retrieving information from sensor data instances in the ontology, in order to display this information was developed a Web application to search for information based on the ontology created; application to refine your search by type of sensor and obtain detailed information from the sensors instantiated. Application tests have been carried out by loading the model of the OWL ontology from a file, for this tool was used Jena.Yacchirema Vargas, DC. (2011). Ontología para la representación de redes semánticas de sensores. http://hdl.handle.net/10251/29800.Archivo delegad

    Fall detection system for elderly people using IoT and ensemble machine learning algorithm

    Full text link
    [EN] Falls represent a major public health risk worldwide for the elderly people. A fall not assisted in time can cause functional impairment in an elderly and a significant decrease in his mobility, independence, and life quality. In this sense, we propose IoTE-Fall system, an intelligent system for detecting falls of elderly people in indoor environments that takes advantages of the Internet of Thing and the ensemble machine learning algorithm. IoTE-Fall system employs a 3D-axis accelerometer embedded into a 6LowPAN wearable device capable of capturing in real time the data of the movements of elderly volunteers. To provide high efficiency in fall detection, in this paper, four machine learning algorithms (classifiers): decision trees, ensemble, logistic regression, and Deepnets are evaluated in terms of AUC ROC, training time and testing time. The acceleration readings are processed and analyzed at the edge of the network using an ensemble-based predictor model that is identified as the most suitable predictor for fall detection. The experiment results from collection data, interoperability services, data processing, data analysis, alert emergency service, and cloud services show that our system achieves accuracy, precision, sensitivity, and specificity above 94%.Research presented in this article has been partially funded by Horizon 2020 European Project grant INTER-IoT no. 687283, ACTIVAGE project under grant agreement no. 732679, the Escuela Politecnica Nacional, Ecuador, and Secretaria de Educacion Superior Ciencia, Tecnologia e Innovacion (SENESCYT), Ecuador.Yacchirema, D.; Suárez De Puga, J.; Palau Salvador, CE.; Esteve Domingo, M. (2019). Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Personal and Ubiquitous Computing. 23(5-6):801-817. https://doi.org/10.1007/s00779-018-01196-8S801817235-6He W, Goodkind D, Kowal P (2016) U.S. Census Bureau, International Population Reports, P95/16-1, An Aging World: 2015. U.S. Government Publishing Office, Washington, DCBousquet J, Kuh D, Bewick M, Standberg T, Farrell J, Pengelly R, Joel ME, Rodriguez Mañas L, Mercier J, Bringer J, Camuzat T, Bourret R, Bedbrook A, Kowalski ML, Samolinski B, Bonini S, Brayne C, Michel JP, Venne J, Viriot-Durandal P, Alonso J, Avignon A, Ben-Shlomo Y, Bousquet PJ, Combe B, Cooper R, Hardy R, Iaccarino G, Keil T, Kesse-Guyot E, Momas I, Ritchie K, Robine JM, Thijs C, Tischer C, Vellas B, Zaidi A, Alonso F, Andersen Ranberg K, Andreeva V, Ankri J, Arnavielhe S, Arshad H, Augé P, Berr C, Bertone P, Blain H, Blasimme A, Buijs GJ, Caimmi D, Carriazo A, Cesario A, Coletta J, Cosco T, Criton M, Cuisinier F, Demoly P, Fernandez-Nocelo S, Fougère B, Garcia-Aymerich J, Goldberg M, Guldemond N, Gutter Z, Harman D, Hendry A, Heve D, Illario M, Jeande C, Krauss-Etschmann S, Krys O, Kula D, Laune D, Lehmann S, Maier D, Malva J, Matignon P, Melen E, Mercier G, Moda G, Nizinkska A, Nogues M, O’Neill M, Pelissier JY, Poethig D, Porta D, Postma D, Puisieux F, Richards M, Robalo-Cordeiro C, Romano V, Roubille F, Schulz H, Scott A, Senesse P, Slagter S, Smit HA, Somekh D, Stafford M, Suanzes J, Todo-Bom A, Touchon J, Traver-Salcedo V, van Beurden M, Varraso R, Vergara I, Villalba-Mora E, Wilson N, Wouters E, Zins M (2015) Operational definition of active and healthy ageing (AHA): a conceptual framework. J Nutr Health Aging 19(9):955–960Yacchirema DC, Sarabia-Jácome D, Palau CE, Esteve M (2018) A Smart System for sleep monitoring by integrating IoT with big data analytics. IEEE Access, p 1Robie K (2010) Falls in older people: risk factors and strategies for prevention. JAMA 304(17):1958–1959Jrad RBN, Ahmed MD, Sundaram D (2014) Insider Action Design Research a multi-methodological Information Systems research approach. 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS). Marrakech, pp 1–12. https://doi.org/10.1109/RCIS.2014.6861053Chaccour K, Darazi R, El Hassani AH, Andrès E (2017) From fall detection to fall prevention: a generic classification of fall-related systems. IEEE Sensors J 17(3):812–822Min W, Cui H, Rao H, Li Z, Yao L (2018) Detection of human falls on furniture using scene analysis based on deep learning and activity characteristics. IEEE Access 6:9324–9335Ma X, Wang H, Xue B, Zhou M, Ji B, Li Y (2014) Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J Biomed Heal Inform 18(6):1915–1922Yang L, Ren Y, Zhang W (2016) 3D depth image analysis for indoor fall detection of elderly people. Digit Commun Netw 2(1):24–34Mastorakis G, Makris D (2014) Fall detection system using Kinect’s infrared sensor. J Real-Time Image Process 9(4):635–646Kwolek B, Kepski M (2014) Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput Methods Prog Biomed 117(3):489–501Wang Y, Wu K, Ni LM (2017) WiFall: device-free fall detection by wireless networks. IEEE Trans Mob Comput 16(2):581–594Sehairi K, Chouireb F, Meunier J (2018) Elderly fall detection system based on multiple shape features and motion analysis. 2018 International Conference on Intelligent Systems and Computer Vision (ISCV). Fez, pp 1–8. https://doi.org/10.1109/ISACV.2018.8354084Álvarez de la Concepción MÁ, Soria Morillo LM, Álvarez García JA, González-Abril L (2017) Mobile activity recognition and fall detection system for elderly people using Ameva algorithm. Pervasive Mob Comput 34:3–13Fortino G, Gravina R (2015) Fall-MobileGuard: a smart real-time fall detection system. In: Proceedings of the 10th EAI International Conference on Body Area Networks (BodyNets '15). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ICST, Brussels, Belgium, pp 44–50. https://doi.org/10.4108/eai.28-9-2015.2261462Aguiar B, Rocha T, Silva J, Sousa I (2014) Accelerometer-based fall detection for smartphones. 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Lisboa, pp 1–6. https://doi.org/10.1109/MeMeA.2014.6860110Kau L, Chen C (2015) A smart phone-based pocket fall accident detection, positioning, and rescue system. IEEE J Biomed Heal Inform 19(1):44–56He J, Bai S, Wang X (2017) An Unobtrusive Fall Detection and Alerting System Based on Kalman Filter and Bayes Network Classifier. Sensors 17:1393. https://doi.org/10.3390/s17061393Santoyo-Ramón JA, Casilari E, Cano-García JM (2018) Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection with Supervised Learning. Sensors 18:1155. https://doi.org/10.3390/s18041155Mao A, Ma X, He Y, Luo J (2017) Highly Portable, Sensor-Based System for Human Fall Monitoring. Sensors 17:2096. https://doi.org/10.3390/s17092096Casilari E, Oviedo-Jiménez MA (2015) Automatic fall detection system based on the combined use of a smartphone and a smartwatch. PLoS One 10(11):e0140929Dias PVGF, Costa EDM, Tcheou MP, Lovisolo L (2016) Fall detection monitoring system with position detection for elderly at indoor environments under supervision. 2016 8th IEEE Latin-American Conference on Communications (LATINCOM). Medellin, pp. 1–6. https://doi.org/10.1109/LATINCOM.2016.7811576Phu PT, Hai NT, Tam NT (2015) A Threshold Algorithm in a Fall Alert System for Elderly People. In: Toi V, Lien Phuong T (eds) 5th International Conference on Biomedical Engineering in Vietnam. IFMBE Proceedings, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-11776-8_85 . ISBN:978-3-319-11775-1Santiago J, Cotto E, Jaimes LG, Vergara-Laurens, I (2017) Fall detection system for the elderly. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). Las Vegas, NV, pp 1–4. https://doi.org/10.1109/CCWC.2017.7868363Malheiros L, Nze GDA, Cardoso LX (2017) Fall detection system and body positioning with heart rate monitoring. IEEE Lat Am Trans 15(6):1021–1026Ethem Alpaydin (2010) Introduction to Machine Learning, 2nd edn. The MIT PressMezghani N, Ouakrim Y, Islam MR, Yared R, Abdulrazak B (2017) Context aware adaptable approach for fall detection bases on smart textile. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Orlando, FL, pp 473–476. https://doi.org/10.1109/BHI.2017.7897308Pierleoni P, Belli A, Palma L, Pellegrini M, Pernini L, Valenti S (2015) A high reliability wearable device for elderly fall detection. IEEE Sensors J 15(8):4544–4553Aziz O, Musngi M, Park EJ, Mori G, Robinovitch SN (2017) A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med Biol Eng Comput 55(1):45–55Nguyen LP, Saleh M, Le Bouquin Jeannès R (2018) An Efficient Design of a Machine Learning-Based Elderly Fall Detector. In: Ahmed M, Begum S, Fasquel JB (eds) Internet of Things (IoT) Technologies for HealthCare. HealthyIoT 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 225. Springer, ChamÖzdemir TA, Barshan B (2014) Detecting falls with wearable sensors using machine learning techniques. Sensors 14(6):10691–10708Tong L, Song Q, Ge Y, Liu M (2013) HMM-based human fall detection and prediction method using tri-axial accelerometer. IEEE Sensors J 13(5):1849–1856SISTEMIC: Research group on Embedded Systems and Computational Intelligence of the Electronics and Telecommunications Department at the Faculty of Engineering, University of Antioquia, “SisFall Dataset.” Online. Available: http://sistemic.udea.edu.co/investigacion/proyectos/english-falls/?lang=en . Accessed 2 Feb 2018Rubenstein L (2006) Falls in older people: epidemiology. Risk Factors and Strategies for Prev 35(Suppl 2):ii37–ii41Youn J, Okuma Y, Hwang M, Kim D, Cho JW (2017) Falling direction can predict the mechanism of recurrent falls in advanced Parkinson’s disease. Sci Rep 7(1):3921Nevitt S, Cummings MC (2018) Type of fall and risk of hip and wrist fractures: The study of osteoporotic fractures. J Am Geriatr Soc 41(11):1226–1234Karantonis DM, Narayanan MR, Mathie M, Lovell NH, Celler BG (2006) Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed 10(1):156–167Khan AM, Lee YK, Kim TS (2008) Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets in 2008 30th Annual International. Conf Proc IEEE Eng Med Biol Soc 2008:5172–5175Yoshida T, Mizuno F, Hayasaka T, Tsubota K, Wada S, Yamaguchi T (2005) A wearable computer system for a detection and prevention of elderly users from falling. In: Proceedings of the 12th international conference on biomedical engineering. Singapore, pp 179–182Kangas M, Konttila A, Winblad I, Jamsa T (2007) Determination of simple thresholds for accelerometry based parameters for fall detection. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon (France), pp 1367–1370. https://doi.org/10.1109/IEMBS.2007.4352552 . E- ISSN: 1558-4615Shan S, Yuan T (2010) A wearable pre-impact fall detector using feature selection and Support Vector Machine. In: IEEE 10th International Conference on Signal Processing Proceedings. Beijin (China), pp 1686–1689. https://doi.org/10.1109/ICOSP.2010.5656840 . E- ISSN: 2164-523XLombardi A, Ferri M, Rescio G, Grassi M, Malcovati P (2009) Wearable wireless accelerometer with embedded fall-detection logic for multi-sensor ambient assisted living applications. In: 2009 IEEE Sensors. Christchurch (New Zealand), pp. 1967–1970. https://doi.org/10.1109/ICSENS.2009.5398327 . E- ISSN: 1930-0395Aziz O, Klenk J, Schwickert L, Chiari L, Becker C, Park EJ, Mori G, Robinovitch SN (2017) Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets. PLoS One 12(7):e0180318Wang K, Delbaere K, Brodie MAD, Lovell NH, Kark L, Lord SR, Redmond SJ (2017) Differences between gait on stairs and flat surfaces in relation to fall risk and future falls. IEEE J Biomed Heal Inform 21(6):1479–1486Lindholm B, Hagell P, Hansson O, Nilsson MH (2015) Prediction of falls and/or near falls in people with mild Parkinson’s disease. PLoS One 10(1):e0117018Fan Y, Levine MD, Wen G, Qiu S (2017) A deep neural network for real-time detection of falling humans in naturally occurring scenes. Neurocomputing 260:43–58Jokanovic B, Amin M, Ahmad F (2016) Radar fall motion detection using deep learning. In: 2016 IEEE Radar Conference (RadarConf). Philadelphia (USA), pp 1–6. https://doi.org/10.1109/RADAR.2016.7485147 . E- ISSN: 2375-5318Jankowski S, Szymański Z, Dziomin U, Mazurek P, Wagner J (2015) Deep learning classifier for fall detection based on IR distance sensor data. In: 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol 2. Warsar (Polonia), pp. 723–727. https://doi.org/10.1109/IDAACS.2015.7341398Jokanović B, Amin M (2018) Fall detection using deep learning in range-Doppler radars. IEEE Trans Aerosp Electron Syst 54(1):180–189Shojaei-Hashemi A, Nasiopoulos P, Little JJ, Pourazad MT (2018) Video-based Human Fall Detection in Smart Homes Using Deep Learning. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Florence (Italy), pp 1–5. https://doi.org/10.1109/ISCAS.2018.8351648 . E- ISSN: 2379-447XLeu F-Y, Ko C-Y, Lin Y-C, Susanto H, Yu H-C (2017) Chapter 10 - Fall Detection and Motion Classification by Using Decision Tree on Mobile Phone. In: Xhafa F, Leu F-Y, Hung L-LBT-SSN (eds) Intelligent Data-Centric Systems Book. Academic Press, pp 205–237. https://doi.org/10.1016/B978-0-12-809859-2.00013-9Yacchirema D, Suárez de Puga J, Palau C, Esteve M (2018) Fall detection system for elderly people using IoT and Big Data. In: 9th International Conference on Ambient Systems, Networks and Technologies (ANT 2018), Porto (Portugal), available at Procedia Computer Science, vol 130, pp 603–610. https://doi.org/10.1016/j.procs.2018.04.110 E-ISSN:1877-0509Rougier C, Meunier J, St-Arnaud A, Rousseau J (2011) Robust video surveillance for fall detection based on human shape deformation. IEEE Trans Circuits Syst Video Technol 21(5):611–622Stone EE, Skubic M (2015) Fall detection in homes of older adults using the Microsoft Kinect. IEEE J Biomed Heal Inform 19(1):290–301Yuwono M, Moulton BD, Su SW, Celler BG, Nguyen HT (2012) Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems. Biomed Eng Online 11(1):9Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol. 1, no. 10. Springer series in statistics New York, NY, USA. https://doi.org/10.1007/b94608 . E-ISBN: 9780387848587Zhang C, Ma Y (2012) Ensemble machine learning: Methods and applications. Springer-Verlag New York, NY. https://doi.org/10.1007/978-1-4419-9326-7 . E-ISBN 978-1-4419-9326-7Big ML (2017) Inc. US “Comprehensive Machine Learning Platform”. Online. Available: https://bigml.com/features . Accessed 12 Aug 2018Ling CX, Huang J, Zhang H et al (2003) AUC: a statistically consistent and more discriminating measure than accuracy. In: 18th Int'l Joint Conf. Artificial Intelligence (IJCAI), Acapulco (mexico), vol 3, pp 519–524. ISBN:0-7695-2728-0Dai J, Bai X, Yang Z, Shen Z, Xuan D (2010) PerFallD: A pervasive fall detection system using mobile phones. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). Mannheim (Germany), pp 292–297. https://doi.org/10.1109/PERCOMW.2010.5470652 . E- ISBN: 978-1-4244-6606-1Li Y, Ho KC, Popescu M (2012) A microphone array system for automatic fall detection. IEEE Trans Biomed Eng 59(5):1291–1301Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874Pease SG, Trueman R, Davies C, Grosberg J, Yau KH, Kaur N, Conway P, West A (2018) An intelligent real-time cyber-physical toolset for energy and process prediction and optimisation in the future industrial Internet of Things. Futur Gener Comput Syst 79(Part 3):815–829Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140Hanke S, Mayer C, Hoeftberger O, Boos H, Wichert R, Tazari M-R, Wolf P, Furfari F (2011) universAAL -- An Open and Consolidated AAL Platform. In: Wichert R, Eberhardt B (eds) Ambient Assisted Living: 4. AAL-Kongress 2011, Berlin, Germany, January 25–26, 2011. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 127–140. https://doi.org/10.1007/978-3-642-18167-2_10 . E-ISBN: 978-3-642-18167-2Gjoreski H, Lustrek M, Gams M (2011) Accelerometer Placement for Posture Recognition and Fall Detection. In: 2011 Seventh International Conference on Intelligent Environments. Nottingham (UK), pp 47–54. doi: https://doi.org/10.1109/IE.2011.11 . E- ISBN: 978-0-7695-4452-6Parker C (2011) An Analysis of Performance Measures for Binary Classifiers. In: 2011 IEEE 11th International Conference on Data Mining, Vancouver (Canada), pp 517–526. doi: https://doi.org/10.1109/ICDM.2011.21 . E- ISSN: 2374-8486Han J, Kamber M, Pei J (2012) Data Mining Concepts and Techniques, Third Edit. Morgan Kaufmann Publishers in The Morgan Kaufmann Series in Data Management Systems. Waltham (USA). E-ISBN: 978012381480
    corecore